A space-time multivariate Bayesian model to analyse road traffic accidents by severity

Areti Boulieri

Department of Epidemiology & Biostatistics, Imperial College London, UK,
and MRC-PHE Centre for Environment & Health, Imperial College London, UK

Silvia Liverani

Department of Mathematics, Brunel University London, UK;
Medical Research Centre Biostatistics Unit, Cambridge, UK,
and Department of Epidemiology & Biostatistics, Imperial College London, UK

Kees de Hoogh

Department of Epidemiology & Biostatistics, Imperial College London, UK,
and Swiss Tropical & Public Health Institute, Basel, Switzerland

Marta Blangiardo

Department of Epidemiology & Biostatistics, Imperial College London, UK,
and MRC-PHE Centre for Environment & Health, Imperial College London , UK

Summary. This paper investigates the dependencies between severity levels of road traffic accidents, accounting at the same time for spatial and temporal correlations. The study analyses road traffic accidents data at ward level in England over the period 2005-2013. We include in our model multivariate spatially structured and unstructured effects to capture the respective dependencies between severities, within a Bayesian hierarchical formulation. We also include a temporal component to capture the time effects and we carry out an extensive model comparison. The results show important associations in both spatially structured and unstructured effects between severities, while a downward temporal trend is observed for low and high severity levels. Maps of posterior accident rates indicate elevated risk within big cities for accidents of low severity and in suburban areas in the north and on the southern coast of England for accidents of high
severity. Posterior probability of extreme rates is used to suggest the presence of hot spots in a public health perspective.

Keywords: Bayesian hierarchical models, multivariate modelling, road traffic accidents, space-time correlation, probability maps

1. Introduction

Road traffic accidents are considered to be a major public health issue, with consequences similar to those of cancer, cardiovascular and other non-communicable diseases. According to the annual reports of casualties in Great Britain by the Department for Transport for years 2005 to 2013, on average, 2,400 people die on Britain’s roads every year, making it the leading cause of mortality for ages 15-34. At the same time, 222,000 non-fatal accidents occur every year causing immediate and later physical, social and psychological consequences to those involved. Road traffic accidents have an intrinsic spatial structure which is important to take into account properly in order to be able to identify areas of particularly high risk. In addition, a temporal trend could also be identified when data on multiple time points (e.g. years) are considered. The aim of this paper is to develop a statistical framework that makes use of the spatio-temporal structure of road traffic accidents, as well as the correlation between severity levels, and helps highlight areas characterised by excess risk, to inform future health policy strategies.

Both classical and Bayesian methods have been used to deal with road traffic accidents data analysis. In the context of classical statistics, Poisson regression techniques, which are suitable for count data, have been used by many authors in the past. For instance, Miaou and Lum (1993) compared this technique to the conventional linear regression to assess accidents and highway geometric design relationships, while Jovanis and Chang (1986) used Poisson regression to assess the effects of travel mileage on accident occurrence. Other examples of previous work include Kim and Yamashita (2002) and Graham and Glaister (2003) who
focused on the association between road traffic accidents and potential risk factors.

However, the main assumption for Poisson models is that the mean is equal to the variance, and this is often violated, thus causing underestimated standard errors. This problem is known as overdispersion. Negative Binomial regression models are a generalisation of Poisson models and they have been used to relax this constraint (Miaou, 1994; Shankar et al., 1995; Noland and Quddus, 2004). Other alternatives exist, such as zero-inflated models which are appropriate for data that exhibit excess zeros (Miaou, 1994). All the above methods have serious limitations though, mainly because they give unstable estimates due to the large variability from one area to another, especially when the population size and/or the geographical scale of the analysis is small.

The Bayesian hierarchical framework is a potential valid alternative, being more flexible and able to handle data with low counts, and also to easily account for spatial correlation. Bayesian hierarchical methods facilitate smoothing by borrowing information from neighbouring units, an essential point in case of low counts, since it leads to more stable estimates (Ghosh et al., 1998; Maiti, 1998). Advantages of these methods over other statistical techniques were discussed by Ghosh and Rao (1994). Bayesian hierarchical models have been applied to road traffic accidents by many authors (Miaou et al., 2003; MacNab, 2004; Qin et al., 2004; Torre et al., 2007). The Poisson log-normal model, including random effects specified through the ‘Besag-York-Mollie’ (BYM) structure (Besag et al., 1991) have been shown to be the most appropriate for road traffic accidents analysis (Aguero-Valverde and Jovanis, 2006; Quddus, 2008a). The BYM model consists of both spatially structured and unstructured random effects accounting for heterogeneity as well as for spatial correlation based on neighbourhood. It has many applications in numerous fields, including epidemiology and public health, where disease mapping is the main focus (Best et al., 2005).

A key issue with these models is the choice of the exposure variable. Typi-
cally in disease mapping the expected number of cases is used, but this is not feasible in the context of road traffic accidents. Several authors have focused on alternative ways of obtaining a proxy of the population at risk. Various examples are based on total population, numbers of registered vehicles, or numbers of licensed drivers, but they are generally recognized as poor surrogates for the actual amount of accident risk, and as mentioned by Wolfe (1982), the most easily obtained exposure measures are rarely the most desirable ones. Traffic volume seems to be the most appropriate exposure measure, and is usually described by the ‘annual average daily traffic’ (AADT) count (Aguero-Valverde, 2011). To approximate this to areal-level, Fridstrom et al. (1995) used the petrol sales, while Eksler (2008) used information of AADT to get counts for each region and then multiplied it by the road length. Alternatively, the levels of population and employment density were used to represent travel activity by Graham and Glaister (2003) and also used by Noland and Quddus (2004). The traffic volume was used as an explanatory variable by Quddus (2008a), who used a function of the number of registered cars as an exposure variable, while Jones et al. (2008) and Ackaah and Salifu (2011) also included indicators of traffic volume as explanatory variables in their models.

Extended research has also been conducted in the field of time series models, which are employed to overcome dependency issues in time-related data. The ‘autoregressive integrated moving average’ (ARIMA) model, introduced by Box and Jenkins (1976) has been used to model time series count data in many applications over the last few decades (Houston and Richardson, 2002; Van den Bossche et al., 2006; Goh, 2005). The ‘integer-valued autoregressive’ (INAR) model initially introduced by McKenzie (1985) and further studied by Al-Osh and Alzaid (1987) was applied to road traffic accidents in Great Britain by Quddus (2008b) showing important improvements over the ARIMA specification. The ‘demand for road use, accidents and their gravity’ (DRAG) approach is a three step approach, that considers risk exposure, accident rate and its severity, and has also been extensively used (Gaudry et al., 1993; Tegnér and
Loncar-Lucassi, 1997). In state space models, also known as structural time series models or unobserved components models, the three important road safety components, i.e. exposure, accidents, and accident severity, can be modelled simultaneously. Examples of multivariate state space models in the area of road safety can be found in Bijleveld et al. (2010), and Durbin and Koopman (2012).

Within the Bayesian framework, extensions to space-time modelling have been proposed in order to assess the trend of spatial patterns over time. Bernardinelli et al. (1995) presented a parametric approach in which an area specific intercept and a time trend are modelled as random effects, allowing for some form of space-time interactions. However, a restrictive assumption is that the time trend is linear. Waller et al. (1997) proposed a model in which the spatially structured and unstructured effects are nested within time therefore allowing for the spatial patterns at each time point to be completely different. Knorr-Held and Besag (1998) proposed a nonparametric model that combines space and time effects additively, accounting for information shared both in the two dimensions. Here, the temporal component can be interpreted as the temporal analogue of the spatial component in the Besag et al. (1991) formulation. Knorr-Held (2000) extended this approach by including a space-time interaction term, while variations have also been proposed by other authors (MacNab and Dean, 2001, 2002; Richardson et al., 2006).

In the literature, a separate univariate analysis of road traffic accidents is usually carried out per severity level (slight, severe and fatal) identifying different patterns and estimates for each category (Aguero-Valverde and Jovanis, 2006; Quddus, 2008a; Jones et al., 2008). However, it is reasonable to assume that accident severities are not independent but instead there is some degree of correlation among them and therefore, a potential statistical problem arises when this is not taken into account in the modelling framework. This issue was studied by Bijleveld (2005) who showed that there is a need for multivariate modelling in the road traffic accidents analysis. Joint approaches were
attempted by Ma and Kockelman in a series of papers via multivariate Poisson (MVP) and multivariate Poisson-lognormal (MVPLN) models (Ma and Kockelman, 2006; Ma et al., 2008). The latter method was also used by Park and Lord (2007) and Aguero-Valverde and Jovanis (2009). All these studies suggested interactions among accident severities, thus showing advantages of the joint specification. However, none of them accounted for spatial and temporal correlation.

Very limited research has combined ideas from a multivariate setting and space analysis for road traffic accident analysis. Song et al. (2006) proposed a number of priors for Bayesian multivariate hierarchical models, while recently, Wang and Kockelman (2013) attempted to model pedestrian crash counts through a Poisson log-normal multivariate model. To the best of our knowledge, only Miaou and Song (2005) and Wang et al. (2011) have considered both space and time dependencies, the former through a GLMM method, and the latter through a two-stage mixed model respectively.

In this paper, we propose a Bayesian multivariate statistical framework that accounts for both space and time correlation, to jointly model road traffic accidents by severity level. Following the spatio-temporal approach from Knorr-Held and Besag (1998), we incorporate the multivariate CAR formulation initially suggested by Mardia (1988), in order to capture dependences across space and accident severities, while a random walk is specified to model the temporal correlation. In order to assess the performance of the multivariate approach proposed, we also present a series of alternative models for comparisons. Our data consider road traffic accidents in England for the years 2005 to 2013. In this study we also produce informative maps of England based on the results of the models, in order to visualise the pattern of accident rates across time and identify areas with elevated risk.

This paper is structured as follows. In Section 2 we present a brief description of the data used for the analysis, and in Section 3 we present the statistical methodology. Section 4 describes the results of the analysis. Finally,
conclusions and recommendations for further research are discussed in Section 5.

2. Data Description

In Great Britain, every road accident on the public highway, which includes human injury or death, is recorded on a STATS19 report form by police officers (Department for Transport, 2010). This form collects a range of information such as time and location, road condition, behavior of the driver as well as the vehicles that were involved and the severity level of the accident. The STATS19 form is completed at either the scene of the accident, or when the accident is reported to the police. Although there might be a small proportion of minor accidents not reported, especially when no human injury was incurred, STATS19 data provide the most detailed and reliable available source on accidents. The Department for Transport has overall responsibility for the design and the collection system of the STATS19 data.

We analysed the data for the years 2005 to 2013 for England. For each accident the location and its severity are available, which can take one of three values: slight, severe or fatal. An accident is classed as fatal when a death occurred within a month of the collision and severe when a hospital treatment is required. Otherwise it is classed as slight. We aggregated the accidents at the electoral ward level (7,932 in England) by severity for each year, considering fatal and severe in the same category, as fatalities account for an average of 0.014% of the total number of accidents for each year. In the rest of the paper, low severity refers to slight accidents, while high severity refers to severe or fatal ones.

A number of around 199,000 accidents occurred in England in the year 2005 with a decrease down to 139,000 accidents in 2013. The majority of them were of low severity - around 85% of the total number of accidents for all years. Table 1 presents the summary statistics of the accidents data at ward level, as used in the analysis.
Table 1: Summary statistics of the data at ward level by severity and year in England.

Traffic count data for the majority of main roads in England (motorways and A-roads) were obtained from the Department for Transport (Road Traffic Statistics Branch). These are very stable across all years considered in the study (2005 to 2013), and hence traffic counts based on the middle year, 2009, were used for the analysis. The Annual Average Daily Flow (AADF) data, consisting of traffic counts (980 and 16,941 for respectively motorways and A-roads) for each junction to junction link on the major road network, were joined within a GIS to the Ordnance Survey Meridian road network. The traffic data were joined to the road network by associating points to the correct road links based on road names or, if not available, by associating point to the nearest road link based on distance. In the few occasions when no traffic count was provided for the road link, an estimate was made by calculating the average of the traffic counts of the bordering road segments (Eeftens et al., 2012; de Hoogh et al., 2013; Beelen et al., 2013).

The resulting road traffic GIS file was subsequently intersected with the Wards 2001 geography and the traffic volume (or intensity) of each individual intersected road segment was calculated by multiplying the length of the road segment with the AADF. The total traffic volume at the ward level was then

<table>
<thead>
<tr>
<th>Year</th>
<th>Mean</th>
<th>Q(2.5%, 97.5%)</th>
<th>% Zeros</th>
<th>Mean</th>
<th>Q(2.5%, 97.5%)</th>
<th>% Zeros</th>
</tr>
</thead>
<tbody>
<tr>
<td>2005</td>
<td>19.19</td>
<td>(18.75, 19.64)</td>
<td>0.73</td>
<td>3.07</td>
<td>(3.00, 3.14)</td>
<td>16.81</td>
</tr>
<tr>
<td>2006</td>
<td>18.06</td>
<td>(17.64, 18.48)</td>
<td>0.77</td>
<td>3.05</td>
<td>(2.98, 3.12)</td>
<td>16.91</td>
</tr>
<tr>
<td>2007</td>
<td>17.37</td>
<td>(16.98, 17.77)</td>
<td>0.82</td>
<td>2.98</td>
<td>(2.91, 3.05)</td>
<td>17.26</td>
</tr>
<tr>
<td>2008</td>
<td>16.24</td>
<td>(15.87, 16.62)</td>
<td>1.16</td>
<td>2.75</td>
<td>(2.68, 2.82)</td>
<td>19.16</td>
</tr>
<tr>
<td>2009</td>
<td>15.63</td>
<td>(15.26, 15.99)</td>
<td>0.92</td>
<td>2.62</td>
<td>(2.56, 2.69)</td>
<td>20.01</td>
</tr>
<tr>
<td>2010</td>
<td>14.87</td>
<td>(14.52, 15.22)</td>
<td>1.27</td>
<td>2.44</td>
<td>(2.38, 2.50)</td>
<td>22.29</td>
</tr>
<tr>
<td>2011</td>
<td>14.53</td>
<td>(14.18, 14.87)</td>
<td>1.60</td>
<td>2.50</td>
<td>(2.44, 2.57)</td>
<td>20.88</td>
</tr>
<tr>
<td>2012</td>
<td>13.89</td>
<td>(13.55, 14.22)</td>
<td>1.70</td>
<td>2.49</td>
<td>(2.43, 2.55)</td>
<td>21.18</td>
</tr>
<tr>
<td>2013</td>
<td>13.26</td>
<td>(12.93, 13.58)</td>
<td>2.18</td>
<td>2.35</td>
<td>(2.30, 2.41)</td>
<td>21.84</td>
</tr>
</tbody>
</table>
calculated by summing the traffic volumes of all road segments lying within the ward:

\[
TV_w = \sum_{rs \in w} TV_{rs}
\]

\[
TV_{rs} = \text{length}(rs) \times AADF_{rs}
\]

where TV is the traffic volume, w represents the ward level, and rs represents the road segment.

3. Statistical Framework

The analysis is carried out within a Bayesian hierarchical framework. We specified a formulation which includes spatial and temporal random effect components. The spatial component consists of spatially structured random effects that allow information to be shared between areas accounting for any potential spatial correlations, as well as spatially unstructured random effects that account for heterogeneity. The temporal component is structured across time, accounting for potential time correlations. We do not include a heterogeneity term in the temporal component, as the number of time points is relatively small.

Using this formulation as a baseline, we present a series of models under various assumptions regarding the spatial and temporal dependencies between low and high accident severities (Table 2). The models are classified into three main groups according to the type of spatial dependences between the two severities: Independent space effects assume independence between the spatial structure of low and high severities, Common space effects assume the same spatial structure for the two severities, while Correlated space effects assume a certain degree of dependence in the spatial random effects. In all groups we include a temporal dependence via a random walk either common or specific for the severity levels.

Table 3 shows how the effects are introduced, to help understand the hierarchy. We describe the groups in detail in the rest of this section.
Table 2: Models under different assumptions for space and time dependences between accident severities.

3.1. Independent space effects

We present here the general modelling approach assuming a complete independence between the two levels of accident severities (Model A in Table 2), as each parameter in the model is severity-specific (low and high).

In the first level of the hierarchy, the observed counts of accidents $Y_{it}^{(j)}$ are modelled as

$$Y_{it}^{(j)} \sim \text{Poisson}(\lambda_{it}^{(j)} \text{Off}_i),$$

for ward i, time point t and severity j. There are $N = 7,932$ wards and 9 time points $t = 1, 2, \ldots, 9$ which correspond to the years 2005, 2006, \ldots, 2013 respectively. The severity level is low or high if $j = 1$ or $j = 2$ respectively. The accident rate is denoted by $\lambda_{it}^{(j)}$ and the offset variable by Off_i, which here is taken as the traffic volume described in Section 2.

The second level of the hierarchy models the accident rate $\lambda_{it}^{(j)}$. It is a function of a spatially unstructured component $\theta_i^{(j)}$, a spatially structured component $\phi_i^{(j)}$, and a temporally structured component $\delta_t^{(j)}$. The model specifications are as follows:

<table>
<thead>
<tr>
<th>Model Specification</th>
<th>Spatial Component</th>
<th>Temporal Component</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. $\alpha_j^{(j)} + \text{BYM} + \delta_t^{(j)}$</td>
<td>$\text{BYM} = \theta_i^{(j)} + \phi_i^{(j)}$</td>
<td>$\delta_t^{(j)} \sim \text{RW1}$</td>
</tr>
<tr>
<td>B. $\alpha_j^{(j)} + \text{BYM} + \delta_t$</td>
<td>$\theta_i^{(j)} \sim \text{Normal}$</td>
<td>$\delta_t \sim \text{RW1}$</td>
</tr>
<tr>
<td>C. $\alpha_j^{(j)} + \text{BYM} + \delta_t^{(j)}$</td>
<td>$\text{BYM} = \theta_i + \phi_i$</td>
<td>$\delta_t^{(j)} \sim \text{RW1}$</td>
</tr>
<tr>
<td>D. $\alpha_j^{(j)} + \text{BYM} + \delta_t$</td>
<td>$\theta_i \sim \text{Normal}$</td>
<td>$\delta_t \sim \text{RW1}$</td>
</tr>
<tr>
<td>E. $\alpha_j^{(j)} + \text{MBYM} + \delta_t^{(j)}$</td>
<td>$\text{MBYM} = \Theta_i + \Phi_i$</td>
<td>$\delta_t^{(j)} \sim \text{RW1}$</td>
</tr>
<tr>
<td>F. $\alpha_j^{(j)} + \text{MBYM} + \delta_t$</td>
<td>$\Theta_i \sim \text{MNormal}$</td>
<td>$\delta_t \sim \text{RW1}$</td>
</tr>
</tbody>
</table>

Table 2: Models under different assumptions for space and time dependences between accident severities.
Table 3: Hierarchy of the Models

ponent $\phi_i^{(j)}$, and a temporally structured component $\delta_i^{(j)}$. It also includes a severity-specific intercept $\alpha^{(j)}$.

$$\log(\lambda_{it}^{(j)}) = \alpha^{(j)} + \theta_i^{(j)} + \phi_i^{(j)} + \delta_i^{(j)}$$

(2)

In the third level, an exchangeable prior is assigned to the spatially unstructured random effects

$$\theta_i^{(j)} \sim \text{Normal}(0, \sigma^2_{\theta (j)})$$

(3)

where $\sigma^2_{\theta (j)}$ is the corresponding variance.

The spatially structured random effects $\phi_i^{(j)}$ are assigned a conditional autoregressive prior (CAR) (Besag, 1974)

$$\phi_i^{(j)} \mid \phi_{(-i)}^{(j)} \sim \text{Normal} \left(\overline{\phi}_i^{(j)}, \frac{\sigma^2_{\phi (j)}}{n_i} \right),$$

(4)

where $\overline{\phi}_i^{(j)} = \sum_{k \in D_i} \frac{\phi_k^{(j)}}{n_i}$. Here, $\sigma^2_{\phi (j)}$ is the variance for the spatially structured random effects, and $\phi_{(-i)}^{(j)}$ denotes all the elements of the vector $\phi^{(j)}$ except for the area i. D_i represents the set of areas that are adjacent to area i (neighbours) and n_i is the total number of those areas. Hence, the spatially structured random effects follow
a Normal distribution with a conditional mean given by the average of the
neighbouring random effects and conditional variance inversely proportional
to the number of neighbouring areas. This results in a spatial smoothing, as
information is borrowed across neighbouring areas. The convolution prior for
the spatial random effects (BYM = $\theta_i + \phi_i$) was initially introduced by Besag

For the temporal component $\delta_t^{(j)}$ a normal random walk prior of order 1
(RW1) is used. To implement this, we use the temporal analogue of the CAR
prior which defines temporal neighbouring points of t as $t - 1$ and $t + 1$. Similar
to the spatial CAR prior, the underlying assumption is a structure where the
neighbouring time points are assumed to be similar (Fahrmeir and Lang, 2001;
Li et al., 2012).

This prior is defined as:

$$
\delta_t^{(j)} \mid \delta_{(-t)}^{(j)} \sim \begin{cases}
\text{Normal}(\delta_{t+1}^{(j)}, \sigma_\delta^{2(j)}) & \text{for } t = 1 \\
\text{Normal}\left(\frac{\delta_{t-1}^{(j)} + \delta_{t+1}^{(j)}}{2}, \frac{\sigma_\delta^{2(j)}}{2}\right) & \text{for } t = 2, 3, \ldots, 8, \quad (5) \\
\text{Normal}(\delta_{t-1}^{(j)}, \sigma_\delta^{2(j)}) & \text{for } t = 9
\end{cases}
$$

where $\delta_{(-t)}^{(j)}$ denotes all elements of $\delta^{(j)}$ except for the time point t and $\sigma_\delta^{2(j)}$
denotes the variance in the temporal effects for accidents of severity j.

A prior Gamma(0.5, 0.0005) is assigned to the precision $\tau_\theta^{2(j)} = 1/\sigma_\theta^{2(j)}$
as introduced by Kelsall and Wakefield (1999) and used by Wakefield et al.
(2000). Simulation studies showed that this is more appropriate for epidemi-
ological studies when compared to the widely used Gamma(0.001, 0.001) and
Gamma(0.2, 0.0001). This prior distribution plays a minimal role in the poste-
rior distribution, and can be described as vague, flat, or non-informative (Gel-
man et al., 2003). This hyperparameter controls for the extra Poisson variation
due to heterogeneity among areas.

Similarly, a prior Gamma(0.5, 0.0005) is also assigned to the precisions $\tau_\phi^{2(j)} = 1/\sigma_\phi^{2(j)}$ and $\tau_\delta^{2} = 1/\sigma_\delta^{2(j)}$, controlling for the variations conditional on the
neighbouring spatial and temporal points respectively. To ensure identifiability of the model, we imposed sum to zero constraints on the vectors ϕ and δ and a flat prior for the intercept α.

In the group of Independent space effects, we also include Model B, which differs from Model A only in the temporal effects $\delta_t \sim \text{RW1}$, which in this case are taken to be common between the two severities.

3.2. Common space effects

Following the Poisson log-normal specification described in Eq. (1)-(5), we present two additional models that assume the same spatial effect for accidents of low and high severity level. This is included in the model in the form of a common distribution (not severity-specific). The spatially unstructured effects θ_i are assigned a common Normal distribution and the spatially structured effects ϕ_i are assigned a common CAR distribution. This means dropping the j superscript in Eq. (3) and (4). The temporal random effects are specified either as independent (Model C) or common (Model D). The prior specification is the same as in Section 3.1.

3.3. Correlated space effects

Finally, we extend the BYM specification to the multivariate BYM (MBYM) which considers a multivariate setting across severities for both spatially structured ϕ_i and unstructured θ_i effects quantifying their correlation.

The spatially structured effects ϕ_i follow a multivariate CAR (MCAR) prior. Assuming that we have a two-dimensional vector of spatially structured random effects $\Phi_i = (\Phi_{i1}, \Phi_{i2})$ for each area $i = 1, \ldots, N$, where the subscripts 1 and 2 represent low and high severity respectively, then we extend the CAR
specification as follows

\[
\Phi_i \mid \Phi_{(-i)} \sim \text{Normal}(\bar{\Phi}_i, \Sigma_{\Phi}/n_i)
\]

where \(\bar{\Phi}_i = (\bar{\Phi}_{i1}, \bar{\Phi}_{i2})\)

with \(\bar{\Phi}_{ip} = \frac{\sum_{k \in D_i} \Phi_{kp}}{n_i}, p = 1 \text{ or } 2\).

\(\Phi_{(-i)} = (\Phi_{1(-i)}, \Phi_{2(-i)})\) denotes the elements of the matrix \(\Phi\) excluding the area \(i\). As in the univariate CAR case, \(D_i\) and \(n_i\) are the set of areas adjacent to area \(i\) and the number of those areas, respectively. \(\Sigma_{\Phi}\) is the \(2 \times 2\) covariance matrix with diagonal elements \(\sigma_{\phi}^2(1)\) and \(\sigma_{\phi}^2(2)\) representing the conditional variances for each severity level. The within-area conditional correlation of random effects of low and high severity \(\rho_{\phi}\) is modelled via the off-diagonal terms

\[
\Sigma_{\Phi} = \begin{pmatrix}
\sigma_{\phi}^2(1) & \rho_{\phi} \sigma_{\phi}^2(1) \\
\rho_{\phi} \sigma_{\phi}^2(1) & \sigma_{\phi}^2(2)
\end{pmatrix}
\]

Hence, MCAR not only takes into account the spatial correlation among areas for each severity, but also allows for correlation between severities in each spatial unit.

Also, for each area \(i = 1, \ldots, N\) we have a two-dimensional vector of spatially unstructured random effects \(\Theta_i = (\Theta_{i1}, \Theta_{i2})\) where again the subscripts 1 and 2 represent low and high severity respectively. On these, a multivariate normal distribution is defined as:

\[
\Theta_i \sim \text{MVNormal}(0, \Sigma_{\Theta})
\]

(7)

where \(0\) is a \(1 \times 2\) vector and \(\Sigma_{\Theta}\) is a \(2 \times 2\) covariance matrix

\[
\Sigma_{\Theta} = \begin{pmatrix}
\sigma_{\theta}^2(1) & \rho_{\theta} \sigma_{\theta}^2(1) \\
\rho_{\theta} \sigma_{\theta}^2(1) & \sigma_{\theta}^2(2)
\end{pmatrix}
\]

with diagonal elements \(\sigma_{\theta}^2(1)\) and \(\sigma_{\theta}^2(2)\) representing the conditional variances for each severity, while the off-diagonal elements \(\rho_{\theta}\) model the within-area conditional correlation of random effects of low and high severity. In addition to \(\rho_{\phi}\) and \(\rho_{\theta}\), we also estimate \(\rho_{\text{tot}}\) which is the within-area conditional correlation
for the total random effect (i.e. sum of spatially structured and unstructured components).

The precision matrix $\Omega = \Sigma^{-1}$ is assigned a Wishart(A, k) prior where A and k denote the inverse scale matrix and the degrees of freedom respectively. We set $k = 2$ for a weakly informative specification. For the inverse scale matrix A, typically a prior belief of the value of the covariance matrix is used. We set the entries on the diagonals to 500 and the off-diagonal entries to 0.0005, following Kass and Natarajan (2006) who suggested considering the data on the prior specification in the multivariate case, and Gelman (2006) who recommended to take considerable care with prior specification on unobserved parameters and assign reasonable values in advance. Although such external information does not usually bias the main estimates, it may have some influence on the precision of the estimates, and it is important to explore this through sensitivity analysis. The prior specification for the remaining components are the same as previously specified.

Similarly to the spatially structured case, a Wishart(A, k) prior is assigned to the precision matrix $R = \Sigma^{-1}$, with the same parameters k and A. The prior specifications for the remaining components are as defined in Section 3.1.

The MBYM specification described in this section, where $\text{MBYM}= \Phi_i + \Theta_i$, is then coupled with independent time effects $\delta_{i,t}$ in Model E and common time effects δ_t in Model F.

3.4. Spatial Fraction

For all the models, we are interested in estimating the relative contribution of structured and unstructured effects to the overall variability. We quantify this through the fraction of the marginal variability of the structured random effects σ^2_ϕ, over the total marginal variability $\sigma^2_\theta + \sigma^2_\phi$. The parameter σ^2_ϕ is not directly available, since from their definition, the spatial effects of ϕ_i are conditional on the neighbouring effects. We thus use the conditional variance which is available, to estimate the empirical marginal variance $\hat{\sigma}^2_\phi = \sum_i (\phi_i - \bar{\phi})^2 / (n - 1)$.

The spatial fraction of interest is given by
\[
\frac{\text{frac}_\phi}{\sigma^2} = \frac{\hat{\sigma}_\phi^2}{\sigma_0^2 + \hat{\sigma}_\phi^2}.
\]
When the spatial fraction is close to 1, structured effects explain most of the variability of the model, while when this is close to 0 the unstructured random effects dominate.

3.5. Model Comparison and Checking

In this work we use Deviance Information Criterion (DIC) (Spiegelhalter et al., 2002) to carry out comparisons among the various models that we develop, but we stress that this is solely used for the purpose of building the models to find the most suitable for the data at hand, and it is not intended as an absolute measure.

The DIC has been extensively used for comparisons among hierarchical models in which the number of parameters is not clearly defined. This is a generalisation of Akaike’s Information Criterion (AIC), as it trades off model fit against a measure of complexity. Similarly to AIC, lower values indicate better performance.

Although the DIC is a useful tool for comparisons among different models, it does not give any information as to whether a specific model is adequate. To assess this, we use posterior predictive checks and Bayesian p-values, as suggested by Lunn et al. (2012). We generate a predictive distribution of accident counts \(Y_{rep} \) for each severity level, year, and area under each model specified in Table 2 and then compare these predictions to the observed data. If the model fits the data adequately, the replicated data should look similar to the observed data. In addition to this graphical check, we also calculate a Bayesian p-value which gives the predictive probability of getting an extreme result:

\[
p_{Bayes} = \Pr \left(T(Y_{rep}, \lambda) > T(Y, \lambda) \mid Y \right)
\]

\(T(Y, \lambda) \) is a test statistic, and here we use the common choice of \(T(Y, \lambda) = Y \) and \(T(Y_{rep}, \lambda) = Y_{rep} \) to check for individual outliers. A \(p_{Bayes} \) value close
to 0.5 suggests that the generated data are compatible to the model, whereas values close to 0 and 1 are considered extreme, and hence suggest poor fit.

Finally, a sensitivity analysis is conducted to evaluate how robust the posterior estimates are under the probability model specified using different priors. In the models with a CAR distribution in the spatially structured effects (Independent and Common space effects), the prior distribution for the precisions τ_ϕ was changed to a half-Cauchy distribution on the natural scale of standard deviation as recommended by Gelman (2006): $\sigma_\phi \sim z/\sqrt{\gamma}$, where σ_ϕ is Cauchy distributed with location zero and scale B, which in turn is assigned a non-informative uniform distribution. In the models with a multivariate CAR distribution (Correlated space effects), the diagonals of the Wishart distribution on the multivariate Normal and multivariate CAR priors are changed to 1 and 1000, while the off-diagonals remain 0.0005.

3.6. Posterior distribution of accident rates

Typically in disease mapping, the results of the analysis are presented in the form of maps that display posterior mean relative risks (or accident rates in the context of road traffic accidents) across areas. This allows to visualise spatial patterns of risk, and also to assess the degree of smoothing by comparing those against maps of crude rates.

Since the posterior mean rates do not make full use of the output of Bayesian analysis, several authors have proposed to map the probability that a rate exceeds a specified threshold (Clayton and Bernardinelli, 1992; Richardson et al., 2004). This is a more powerful tool, which takes into account the uncertainty in the posterior estimates, thus highlighting areas characterised by a strong evidence of an increased risk.

In this paper, besides mapping the posterior accident rates $\lambda_{it}^{(j)}$, we want to highlight dangerous areas, thus we adapt the posterior probability maps to fit this purpose. We borrow ideas from the concept of ranking, extensively used in road traffic accidents analysis (Christiansen et al., 1992; Schlüter et al.,
calculate the posterior probability that the spatial component of the accident rates \(\exp(\theta_i + \phi_i) \) is ranked among the top 800, accounting for roughly 10% of the total number of areas (7,932), for each severity level \(j \). This is given by

\[
\Pr \left(\text{rank}(\exp(\theta_i + \phi_i)^{(j)}) < 800 \right).
\]

In addition, we compare the rank order of areas based on crude rates (averaged across years), against the rank order of areas under the model in order to highlight potential differences and evaluate the impact of the modelling approach. To estimate the latter one, we use the posterior mean of the rank (Miaou and Song, 2005; Tunaru, 2002) of the spatial component \(\exp(\theta_i + \phi_i) \).

4. Results

All models are implemented in OpenBUGS. Two chains are run for each parameter for each model with different initial values for around 50,000 iterations depending on the complexity of the model, from which 5,000-10,000 are discarded as a burn-in, and estimates are based on the remaining samples. The simulations took between 20 to 27 hours per model on an Intel Core processor 3.40GHz with 8GB RAM. The convergence diagnostics that we used include visual check of trace plots, BGR statistic, autocorrelation plots and Monte Carlo error which should be less than 5% of the posterior standard deviation.

Analysing the DIC values of the models in Table 4 allows us to make several observations regarding their fit to the road traffic accidents data. In general, comparing models within groups, it is clear that those with independent temporal effects are favoured over those with common temporal effects (Model A better than Model B, Model C better than Model D, and Model E better than Model F).

Regarding the spatial effects, which are of primary interest in this paper, it is shown that Common space effects provide the worst fit, with high relative differences in the DIC than Independent space effects that follow.
The benefit of including a multivariate structure in the spatial effects (MBYM specification) can be seen in the Correlated space effects, where the DIC decreased greatly. This indicates that there is a non-negligible correlation between low and high severities, in both spatially structured and unstructured effects which needs to be considered in the model. We have also developed a model with a multivariate structure either in ϕ_i or in θ_i alone, followed by an independent structure for the other parameter, in order to further investigate the complex structure of the data. However, these models did not provide any important improvement, indicating that it is the synergy of the multivariate structure on ϕ_i and θ_i that best supports the data. In addition, the fact that Model E is favoured over Model F suggests that there are differences in the temporal trends between low and high severities over the period 2005 to 2013.

<table>
<thead>
<tr>
<th>Independent</th>
<th>Common</th>
<th>Correlated</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>B</td>
<td>C</td>
</tr>
<tr>
<td>DIC</td>
<td>527,400</td>
<td>540,100</td>
</tr>
</tbody>
</table>

Table 4: DIC values for competing models.

Table 5 reports the parameter estimates of all the models that are considered in this study. In general, we observe that most of the estimates are consistent among the different models. The overall mean accident rate is around 0.19 for low severity and 0.03 for high severity. As expected, some differences in the variances for the spatially structured and unstructured effects exist between the models of different groups. More specifically, the Independent space effects give an average of 0.85 and 0.63 for the variability in ϕ_i for low and high severity respectively, while this is somewhere between the two values under the Common space effects models. The same stands for the variability in θ_i. Under the Correlated space effects models, the variability in ϕ_i decreases by around 0.8 for low severity and 0.3 for high severity, while at the same time, the variability in θ_i increases by around 0.3 for both severities, which is important if we
consider the small standard deviations associated with these estimates. Potentially, this is because part of the unstructured variability σ^2_θ in the data can only be captured under a multivariate specification. The impact of including a multivariate setting for both ϕ_i and θ_i is also notable in the reduction in uncertainty associated with the variance estimates due to the information that is borrowed between the two severities. The larger uncertainty in the Independent case is due to the correlation between severities which is not taken into account in the model. The spatial fraction changes across groups of models as this is calculated based on the variances, with the estimates becoming slightly more precise under Correlated space effects.

Within the Correlated group of models, and by looking at the temporal effects σ_δ, we observe that their magnitude seems to be the same for low and high severities, however, as Model E is favoured over Model F, different patterns in the temporal trend between the two severities are suggested.

Focusing on the preferred model (Model E) in Table 5, we make conclusions regarding the sources of variability in road traffic accidents data. A comparison of $\hat{\sigma}^2_{\phi}$ and $\hat{\sigma}^2_\theta$ indicates that the spatially structured effects are somewhat stronger than the spatially unstructured for both low and high severities. This can also be seen by the values of the spatial fraction (frac_{ϕ}). This is distributed around 0.646 for accidents of low severity, and 0.602 for accidents of high severity, indicating that although the impact of spatially structured effects is stronger in both categories, the unstructured effects are also non-negligible. The conditional within-area correlations for ϕ_i and θ_i are 0.77 and 0.64 respectively, whereas the corresponding correlation due to the total random effects is 0.74. Figure 1 presents the temporal effects on the exponential scale, showing an overall decrease in the posterior rates across years. Although for low severity an almost linear pattern is observed, for high severity the downward trend becomes flatter after 2010. What we learn from these findings is that the present data have a complex structure as the variation is due to several sources of variability; spatially structured, spatially unstructured, and temporal ran-
dom effects, as well as the correlation between severities are needed to explain this.

Fig. 1: Median values, 25th and 75th percentiles for the temporal effects under Model E.

Table 6 shows the proportion of areas with extreme p_{Bayes} values for each year and severity level, and the mean values under Model E. An adequate model fit is suggested, as only 13% to 17% of areas are assigned extreme p_{Bayes} values, while these are close to 0.5, varying from 0.55 to 0.63. This is also confirmed by maps of p_{Bayes} values which can be found in Figure 3 of the supporting material.

Sensitivity analyses performed did not highlight noticeable differences on the spatial component ($\theta_i + \phi_i$) as well as on the temporal component, as seen in Figures 4, 5, 6 and 7 in the supporting material, suggesting that our results are robust to the model specification.

We produce maps which help visualise how the risk of road traffic accidents is distributed across space. Figures 2a and 2c show crude rates calculated for a specific year (2005), for low and high severity, together with the corresponding posterior rates under Model E (Figures 2b and 2d).
First, comparing crude and posterior mean rates for high severity, we observe that these are greatly smoothed out under the model. The map of crude rates in Figure 2c does not indicate a particular pattern of risk, showing fairly similar effects across the southwest, central, and centraleast of England. The corresponding map of posterior rates in Figure 2d uncovers a clear pattern; the effects in the southwest are eliminated, while these become stronger towards the eastern part of England and even stronger in the north, mainly in the area that includes Liverpool, Manchester, Leeds and Sheffield, as well as along the southern coast. Clusters of dangerous areas are now detected in the region of Southend-on-Sea, and around Hull and Bridlington. This is in line with common knowledge, as the road connecting those (A165) is believed to be the most dangerous in East Riding. Interestingly, motorways across England can also be clearly distinguished in Figure 2d. To illustrate this, we have linked the map in Figure 2d with the motorway network within GIS and the resulting map can be seen in the supporting material. It appears that the wards including motorways, e.g M24, M1, M4, M11, show low posterior rates compared to the surrounding regions. This is obvious even in central London, where the inner part suffers most and while moving outside, the wards including motorways become less risky. The high accident rates within London and other big cities can be explained by the high numbers of pedestrians and cyclists involved in those, while the high rates in areas between big cities can be explained by the excess speed of vehicles and road conditions that lead to severe and fatal accidents. Other areas that are shown to be prone to accidents of high severity are countryside areas, such as Northumberland, North York, Peak District, and Yorkshire Dales National Parks, where road conditions and characteristics (narrow roads, bends, slopes, etc.) might be an explanation for this.

Second, looking at the posterior mean rates for low severity in Figure 2b, we can see that urban areas in England appear to be more dangerous. The risk for accident incidence is focused mainly within big cities, with central London showing a significantly increased risk. Other big cities, such as Newcastle,
Birmingham, Liverpool, Leeds, Sheffield and Manchester are also shown to be dangerous. This could be again due to the high numbers of pedestrians and cyclists, and presence of bus and cycle lanes.

In contrast to high severity, there are no obvious differences between maps of crude and posterior rates when comparing Figures 2a and 2b. The fact that the model does not affect the rates for low severity importantly is reasonable if we consider that these consist of high counts in general, and the model is designed to provide smoothing to low counts that suffer from great variability. The information of low severity in the model yet contributes to stable estimates for high severity, and this is one of the main aspects of this paper; strength is borrowed not only between areas, but also between severity levels.

Moreover, probability maps in Figures 3a and 3b help discriminate specific areas of excess risk in England, and focus on those which show strong evidence of increased risk, after accounting for the uncertainty in the posterior estimates. The west, east and northest parts of England are no longer shown as dangerous, and clusters of areas that consistently belong to the top 800 ranked areas are observed in central London, and in the area around Southend-on-Sea. This gives a clearer picture of the most dangerous areas at a national level, and therefore provide evidence for prioritising interventions to reduce rates.

Finally, by comparing ranks generated under the model against ranks under crude rates for the top 100 areas (Figures 4a and 4b), we observe that for low severity these are somewhat consistent, whereas for high severity, they differ importantly. Among the top 100 ranked areas the proportion of those that have a difference of more than 15 places between the two ranking criteria is 0.02% for low severity and 0.26% for high severity; when we consider the top 800 ranked areas these numbers increase to 0.27% and 0.75% respectively, suggesting that the features of the model have an important impact on the results.
5. Discussion

In this paper we have compared models for road traffic accidents data under various assumptions on the spatial and temporal dependencies between severities. These models combine ideas from a Bayesian hierarchical framework with space-time effects and multivariate analysis to produce a flexible framework for the analysis of road traffic accidents by severity level.

We have identified the MBYM model as the most appropriate in this context. This model consists of both multivariate spatially structured and unstructured effects that assume a degree of correlation in the respective components between severities, allowing at the same time the quantification of this correlation. The results suggest a high correlation between severities in both spatially structured and unstructured effects, while the time effects are better modelled via separate components indicating fairly different trends for the two severities.

From the point of view of policy making, probability maps and rankings are used to aid the detection of areas characterised by excess risk. One of the strengths of our model is that it does not only provide top ranked areas based on the mean rates of accidents, but in addition it takes into account the uncertainty associated, providing policy makers with a high level of information to draw priority plans for actions. We have shown that this could greatly influence high severity accidents, due to the small numbers. For example, the results of our analysis can be used centrally to decide where to allocate funding to decrease the number of injuries and fatalities due to road accidents. Among the policies that can be implemented to prevent road traffic accidents in the most high-risk areas, there are environmental changes (such as the introduction of speed cameras, or marked pathways for cyclists) and safety education and skills training (such as road safety media campaigns or providing free safety equipment). Different policies can be used for high-risk areas for high and low severity accidents.

The paper has shown that the MBYM specification offers a great improvement over other model specifications that consider joint modelling of accidents
by severity level, however as it is always the case with disease mapping models we should treat this as an explorative analysis, aiming solely at investigating the spatial and temporal pattern of accidents and at identifying areas characterised by particularly high risks. We stress that we are not placing ourselves in the context of hot spot analysis (HSA), which involves a deep investigation from identifying the dangerous locations, ranking these locations according to various criteria, and providing explanations of why certain locations are hot spots, and which usually consider information on the cost of the accidents (Miaou and Song, 2005; Brijs et al., 2007). Instead, our modelling approach can serve as a first step for policy making, which should be followed by further investigation.

The next step of this research would be to formally assess risk factors, including these in the model as explanatory variables. For instance socio-economic and demographic factors and adverse weather conditions could be good candidates to explain the pattern seen for slight and severe accidents. It would be important to also consider the type of road (i.e. major, minor), and other characteristics, and particularly whether a ward includes a motorway or not, in order to formally investigate the findings that were suggested by the current analysis. In addition, information on the classification of an area as rural, suburban, or urban can be incorporated in the model.

Aiming at identifying clusters of areas with an unusual road accidents pattern (e.g. increasing in time while the general temporal trend shows a decrease) more complex models including an interaction term could be considered, which would provide information on areas changes across space and time jointly as presented in Li et al. (2012). However this type of models entail a considerable computational burden for large study regions such as the whole of England, thus we decided against it in the present paper as we were interested in investigating the spatio-temporal trend of accidents for the entire study region. A natural extension of this paper would be to focus on some specific regions, e.g. around the big cities showing evidence of increased risk and go more deeply into these by means of a more complex model which considers for instance a
mixture specification on the interactions.

Acknowledgements

Areti Boulieri acknowledges support from the National Institute for Health Research (NIHR) and the MRC Doctoral Training Partnership (DTP). Marta Blangiardo acknowledges support from the National Institute for Health Research (NIHR) and the MRC-PHE Centre for Environment & Health. Silvia Liverani acknowledges support from the Leverhulme Trust (ECF-2011-576).
<table>
<thead>
<tr>
<th></th>
<th>Independent</th>
<th></th>
<th></th>
<th>Common</th>
<th></th>
<th>Correlated</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Model A</td>
<td>Model B</td>
<td>Model C</td>
<td>Model D</td>
<td>Model E</td>
<td>Model F</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>low sev.</td>
</tr>
<tr>
<td></td>
<td>high sev.</td>
</tr>
<tr>
<td>Intercept</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>exp(α)</td>
<td>0.192</td>
<td>0.192</td>
<td>0.196</td>
<td>0.196</td>
<td>0.192</td>
<td>0.192</td>
<td>0.192</td>
<td>0.192</td>
</tr>
<tr>
<td></td>
<td>(< .001)</td>
</tr>
<tr>
<td>Variances</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>σ²θ</td>
<td>0.089</td>
<td>0.095</td>
<td>0.105</td>
<td>0.316</td>
<td>0.414</td>
<td>0.413</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.011)</td>
<td>(0.012)</td>
<td>(0.012)</td>
<td>(0.018)</td>
<td>(0.011)</td>
<td>(0.011)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>σ²ϕ</td>
<td>0.854</td>
<td>0.850</td>
<td>0.790</td>
<td>0.795</td>
<td>0.641</td>
<td>0.647</td>
<td>0.641</td>
<td>0.647</td>
</tr>
<tr>
<td></td>
<td>(0.014)</td>
<td>(0.014)</td>
<td>(0.013)</td>
<td>(0.013)</td>
<td>(0.013)</td>
<td>(0.014)</td>
<td>(0.013)</td>
<td>(0.014)</td>
</tr>
<tr>
<td>σ²δ</td>
<td>0.0028</td>
<td>0.0026</td>
<td>0.0027</td>
<td>0.0027</td>
<td>0.0028</td>
<td>0.0027</td>
<td>0.0027</td>
<td>0.0027</td>
</tr>
<tr>
<td></td>
<td>(0.002)</td>
<td>(0.002)</td>
<td>(0.002)</td>
<td>(0.002)</td>
<td>(0.002)</td>
<td>(0.002)</td>
<td>(0.002)</td>
<td>(0.002)</td>
</tr>
<tr>
<td>Correlations</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ρϕ</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td>0.769</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(0.009)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ρθ</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td>0.643</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(0.010)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ρtot</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td>0.740</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(0.007)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Spatial Fraction</td>
<td>fracϕ</td>
<td>fracθ</td>
<td>fracδ</td>
<td>fractot</td>
<td></td>
<td>fracϕ</td>
<td>fracθ</td>
<td>fracδ</td>
</tr>
<tr>
<td></td>
<td>0.906</td>
<td>0.900</td>
<td>0.883</td>
<td>0.836</td>
<td>0.646</td>
<td>0.602</td>
<td>0.650</td>
<td>0.606</td>
</tr>
<tr>
<td></td>
<td>(0.012)</td>
<td>(0.013)</td>
<td>(0.013)</td>
<td>(0.013)</td>
<td>(0.009)</td>
<td>(0.010)</td>
<td>(0.009)</td>
<td>(0.010)</td>
</tr>
</tbody>
</table>

Table 5: Mean estimates for parameters of all models developed in the study; standard deviations in parentheses.
Fig. 2: Crude and posterior accident rates for a specific year (2005) for low and high severity.
Fig. 3: Probability that residual accident rates belong to the top 800 ranked areas for low and high severity.

Fig. 4: Area ranks based on crude rates versus posterior ranks for the top 100 areas.
<table>
<thead>
<tr>
<th>Year</th>
<th>low severity</th>
<th>high severity</th>
<th>Mean p_{Bayes} values</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>low severity</td>
</tr>
<tr>
<td>2005</td>
<td>12.7%</td>
<td>15.5%</td>
<td>0.549 (0.285)</td>
</tr>
<tr>
<td>2006</td>
<td>12.3%</td>
<td>14.7%</td>
<td>0.551 (0.281)</td>
</tr>
<tr>
<td>2007</td>
<td>13.0%</td>
<td>14.7%</td>
<td>0.556 (0.284)</td>
</tr>
<tr>
<td>2008</td>
<td>11.0%</td>
<td>15.3%</td>
<td>0.552 (0.273)</td>
</tr>
<tr>
<td>2009</td>
<td>11.7%</td>
<td>15.6%</td>
<td>0.552 (0.275)</td>
</tr>
<tr>
<td>2010</td>
<td>11.3%</td>
<td>15.4%</td>
<td>0.545 (0.275)</td>
</tr>
<tr>
<td>2011</td>
<td>12.2%</td>
<td>15.6%</td>
<td>0.543 (0.282)</td>
</tr>
<tr>
<td>2012</td>
<td>12.4%</td>
<td>15.6%</td>
<td>0.547 (0.285)</td>
</tr>
<tr>
<td>2013</td>
<td>13.9%</td>
<td>17.3%</td>
<td>0.540 (0.2695)</td>
</tr>
</tbody>
</table>

Table 6: Proportion of areas with extreme p_{Bayes} values and the mean p_{Bayes} values for low and high severity under Model E; standard deviations in parentheses.
References

Space-time modelling of road traffic accidents

